Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin J Nat Med ; 21(5): 359-370, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37245874

RESUMO

Renal interstitial fibrosis (RIF) is the crucial pathway in chronic kidney disease (CKD) leading to the end-stage renal failure. However, the underlying mechanism of Shen Qi Wan (SQW) on RIF is not fully understood. In the current study, we investigated the role of Aquaporin 1 (AQP1) in SQW on tubular epithelial-to-mesenchymal transition (EMT). A RIF mouse model induced by adenine and a TGF-ß1-stimulated HK-2 cell model were etablished to explore the involvement of AQP 1 in the protective effect of SQW on EMT in vitro and in vivo. Subsequently, the molecular mechanism of SQW on EMT was explored in HK-2 cells with AQP1 knockdown. The results indicated that SQW alleviated kidney injury and renal collagen deposition in the kidneys of mice induced by adenine, increased the protein expression of E-cadherin and AQP1 expression, and decreased the expression of vimentin and α-smooth muscle actin (α-SMA). Similarly, treatmement with SQW-containing serum significantly halted EMT process in TGF-ß1 stimulated HK-2 cells. The expression of snail and slug was significantly upregulated in HK-2 cells after knockdown of AQP1. AQP1 knockdown also increased the mRNA expression of vimentin and α-SMA, and decreased the expression of E-cadherin. The protein expression of vimentin increased, while the expression of E-cadherin and CK-18 significantly decreased after AQP1 knockdown in HK-2 cells. These results revealed that AQP1 knockdown promoted EMT. Furthermore, AQP1 knockdown abolished the protective effect of SQW-containing serum on EMT in HK-2 cells. In sum, SQW attentuates EMT process in RIF through upregulation of the expression of AQP1.


Assuntos
Aquaporina 1 , Medicamentos de Ervas Chinesas , Insuficiência Renal Crônica , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Animais , Camundongos , Masculino , Linhagem Celular , Ratos , Rim/patologia , Rim/fisiologia , Fibrose/tratamento farmacológico , Insuficiência Renal Crônica/tratamento farmacológico , Adenina , Transição Epitelial-Mesenquimal , Aquaporina 1/metabolismo
2.
Brain Sci ; 12(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35741643

RESUMO

Alzheimer's disease is the most common form of neurodegenerative disease, and increasing evidence shows that insulin signaling has crucial roles in AD initiation and progression. In this study, we explored the effect and underlying mechanism of SQW, a representative formula for tonifying the kidney and promoting yang, on improving the cognitive function in a streptozotocin-induced model of AD rats. We investigated memory impairment in the AD rats by using the Morris water test. HE and Nissl staining were employed to observe the histomorphological changes in the hippocampal. Expression levels of NeuN and proteins related to Tau and apoptosis were measured using immunohistochemistry and Western blotting, respectively. Additionally, we performed RNA sequencing, and the selected hub genes were then validated by qRT-PCR. Furthermore, the protein expression levels of PI3K/AKT pathway-related proteins were detected by Western blot. We found that SQW treatment significantly alleviated learning and memory impairment, pathological damage, and apoptosis in rats, as evidenced by an increased level of NeuN and Bcl-2, and decreased phosphorylation of Tau, Bax, and Caspase-3 protein expression. SQW treatment reversed the expression of insulin resistance-related genes (Nr4a1, Lpar1, Bdnf, Atf2, and Ppp2r2b) and reduced the inhibition of the PI3K/AKT pathway. Our results demonstrate that SQW could contribute to neuroprotection against learning and memory impairment in rats induced by STZ through activation of the PI3K/AKT pathway.

3.
Neurochem Res ; 47(4): 1049-1059, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35037164

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by excessive deposition of ß amyloid (Aß), hyperphosphorylation of tau protein, and neuronal cell death. Recent studies have shown that myelin cell damage, which leads to cognitive dysfunction, occurs before AD-related pathological changes. Here, we examine the effect of icariin (ICA), a prenylated flavonol glycoside, in improving cognitive function in AD model mice. ICA has been reported to exhibit cardiovascular protective functions and antiaging effects. In this study, we used 3 × Tg-AD mice as an AD model. The Morris water maze and Y maze tests were performed to assess the learning and memory of the mice. Immunofluorescence analysis of Aß1-42 deposition and myelin basic protein (MBP) expression in the mouse hippocampus was performed. Tau protein phosphorylation and MBP protein expression in the hippocampus were further analyzed by Western blotting. Myelin damage in the mouse optic nerve was evaluated by electron microscopy, and LFB staining was performed to assess myelin morphology in the mouse corpus callosum. MBP, Mpp5, and Egr2 transcript levels were quantified by qPCR. We observed that ICA treatment improved the learning and memory of 3 × Tg-AD mice and reduced Aß deposition and tau protein phosphorylation in the hippocampus. Moreover, this treatment protocol increased myelin-related gene expression and reduced myelin damage.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Flavonoides , Hipocampo/metabolismo , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Bainha de Mielina/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas tau/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-34777538

RESUMO

Mucus hypersecretion is a hallmark of chronic obstructive pulmonary disease (COPD) and is associated with increasing sputum production and declining pulmonary function. Therefore, reducing mucus secretion can be a new therapeutic opportunity for preventing COPD. The Guifu Dihuang pill (GFDHP) is a classical Chinese medicine and has been used as an immunoregulator for treatment of kidney yang deficiency syndrome, including hypothyroidism, adrenocortical hypofunction, chronic bronchitis, and COPD, for more than 2000 years. However, the protective effects and mechanisms of GFDHP against mucus hypersecretion in COPD remain obscure. The aim of the present study was to explore the inhibitory effects of GFDHP on lipopolysaccharide/cigarette smoke- (LPS/CS-) induced Mucin5ac (Muc5ac) overproduction and airway goblet cell hyperplasia in mice. The mice were randomly assigned into 6 groups: control, model, GFDHP-L, GFDHP-M, GFDHP-H, and dexamethasone. The mice were given LPS twice through intranasal inhalation and then exposed to CS daily for 6 weeks. Three doses of GFDHP were orally administered daily during the last 3 weeks of the experiment. Pulmonary function was examined with an EMKA pulmonary system, and pulmonary hyperpermeability and lung damage were evaluated with an in vivo imaging system. Inflammatory cells and cytokines in bronchoalveolar lavage fluid (BALF) were detected with a cell count analyzer and though ELISA analysis, respectively. Lung pathological changes and airway goblet cell hyperplasia were analyzed with hematoxylin and eosin and Alcian blue periodic acid Schiff staining. The protein expression levels of Muc5ac and extracellular signal-regulated kinase (ERK)-specificity protein1 (SP1) signaling pathway were measured with Western blot and immunohistochemistry. The results demonstrated that GFDHP improved pulmonary function and suppressed mouse pulmonary hyperpermeability and edema. GFDHP suppressed inflammatory cell infiltration and cytokine release in BALF, thereby elevating pulmonary function. It ameliorated lung pathological changes and airway goblet cell hyperplasia, and suppressed expression levels of Muc5ac mRNA and protein and phospho-ERK and SP1 levels in the lung tissues of the COPD mice. In conclusion, GFDHP inhibited mucus hypersecretion induced by LPS/CS by suppressing the activation of the ERK-SP1 pathway.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33273954

RESUMO

Podocytes are a special type of differentiated epithelial cells that maintain the glomerular filtration barrier in the kidney. Injury or damages in podocytes can cause kidney-related disorders, like CKD. The injury or dysfunction of podocytes can occur by different metabolic disorders. Due to the severity and complexity of podocyte injuries, this state is considered as a serious health issue worldwide. Here, we examined and addressed the efficacy of an alternative Chinese medicine, Shen Qi Wan (SQW), on podocyte-related kidney injury. We evaluated the role and mechanism of action of SQW in podocyte injury. We observed that SQW significantly reduced 24-hour urinary protein and blood urea nitrogen levels and alleviated the pathological damage caused by adenine. Moreover, SQW significantly decreased the expression of nephrin and increased the expression of WT1 and AQP1 in the kidney of mice treated with adenine. We observed that SQW did not effectively reduce the high level of proteinuria in AQP1-/- mice indicating the prominent role of AQP1 in the SQW-ameliorating pathway. Transmission electron microscopy (TEM) images indicated the food processes effacement in AQP1-/- mice were not lessened by SQW. In conclusion, podocyte injury could alter the pathological nature of the kidney, and SQW administration relieves the nature of pathogenesis by activating AQP1.

6.
Pharmazie ; 75(8): 395-400, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32758340

RESUMO

It has been shown that Acori tatarinowii rhizoma (ATR) extract can improve cognitive functions in Alzheimer Diseas (AD) patients or animal models. In this study, we have examined the activity of ATR in 3×Tg-AD model mice with different comprehensive behavioral tests like the Morris water maze and Y-maze test assay for behavior. Moreover, we performed LFB staining for myelin determination in the AD model mouse. By analyzing different pathways, we determined key proteins that are beneficial for ameliorating AD syndrome in the mouse. Periluminally, ATR treatment improved the learning and memory ability that was determined by comprehensive behavioral tests. Moreover, treatment reduces the p-Tau accumulation in the 3×Tg-AD mouse and the level of p-Tau accumulation was at per with the wildtype control mouse and improves the myelin lining in 3×Tg-AD mouse. In conclusion, our results indicate that ATR-treatment can improve the learning ability of AD model mice and the hyperphosphorylation of Tau protein was decreased. ATR can protect myelin lining from damage in AD syndrome.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Bainha de Mielina/efeitos dos fármacos , Doença de Alzheimer/fisiopatologia , Animais , Modelos Animais de Doenças , Aprendizagem/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Bainha de Mielina/patologia , Fosforilação , Rizoma , Proteínas tau/metabolismo
7.
Med Sci Monit Basic Res ; 26: e924203, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32475979

RESUMO

BACKGROUND Acori Tatarinowii Rhizoma (ATR), a traditional Chinese herbal medicine, is used to treat Alzheimer's disease (AD), which is a worldwide degenerative brain disease. The aim of this study was to identify the potential mechanism and molecular targets of ATR in AD by using network pharmacology. MATERIAL AND METHODS The potential targets of the active ingredients of ATR were predicted by PharmMapper, and the targets of Alzheimer's disease were searched by DisGeNET. All screened genes were intersected to obtain potential targets for the active ingredients of ATR. The protein-protein interaction network of possible targets was established by STRING, GO Enrichment, and KEGG pathway enrichment analyses using the Annotation of DAVID database. Next, Cytoscape was used to build the "components-targets-pathways" networks. Additionally, a "disease-component-gene-pathways" network was constructed and verified by molecular docking methods. In addition, the active constituents ß-asarone and ß-caryophyllene were used to detect Aß1₋42-mediated SH-SY5Y cells, and mRNA expression levels of APP, Tau, and core target genes were estimated by qRT-PCR. RESULTS The results showed that the active components of ATR participate in related biological processes such as cancer, inflammation, cellular metabolism, and metabolic pathways and are closely related to the 13 predictive targets: ESR1, PPARG, AR, CASP3, JAK2, MAPK14, MAP2K1, ABL1, PTPN1, NR3C1, MET, INSR, and PRKACA. The ATR active components of ß-caryophyllene significantly reduced the mRNA expression levels of APP, TAU, ESR1, PTPN1, and JAK2. CONCLUSIONS The targets and mechanism corresponding to the active ingredients of ATR were investigated systematically, and novel ideas and directions were provided to further study the mechanism of ATR in AD.


Assuntos
Acorus/química , Acorus/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , China , Medicina Tradicional Chinesa/métodos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Mapas de Interação de Proteínas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...